Please wait while the transcript is being prepared...
0:00
Hello. My name is Wenjun Guo.
I'm an Associate Professor
of Cell Biology at
Albert Einstein College of
Medicine in New York City.
Today, I will give a basic
introduction to the concepts
and principles of
cancer stem cells.
The research field
of cancer stem cells
is vast and rapidly evolving.
In this lecture, I will only
cover a very limited area of
cancer stem cell biology,
with focuses on
initial conception
and the discovery of
cancer stem cells,
the experimental approaches for
studying cancer stem cells
and the current
prevailing models.
Much of this information
is likely to be
refined and revised
by future studies.
0:46
First, to discuss
cancer stem cells,
we need to talk about normal
tissue stem cell hierarchy.
Many tissue types in
our body are maintained
by multipotent
tissue-specific stem cells.
For example, the
hematopoietic stem cells
constantly regenerate
all the blood cell
lineages in our body.
These multipotent stem
cells are long-lived
and have unlimited
self-renewal ability.
Furthermore, they have
the capacity to generate
transit-amplifying/progenitor
cells that can fully
differentiate into mature cell
types within that tissue.
These transit-amplifying
progenitor cells
have a limited lifespan and a
limited self-renewal capacity,
needing to be
continuously replenished
by multipotent stem cells.
1:37
However, more recently,
people have found
that some tissue types
can also be maintained
by more committed so-called
unipotent stem cells.
For example, the mammary gland.
In these tissue types,
the multipotent stem
cells are required
for the initial
embryonic development.
However, at later stages,
such as postnatal,
distinct mature cell
types can be replenished
by unipotent stem cells
with restricted
differentiation potential.
Distinct from
transit-amplifying progenitors,
these unipotent stem
cells are long-lived
and with unlimited
self-renewal ability.
Different from
multipotent stem cells,
the unipotent stem
cells do not produce
all the cell types
within the tissue.
This heterogeneity of
the stem cell pools
within a given tissue
provided us with new
frameworks for studying
cancer cell origin and
the cancer cell states.