Registration for a live webinar on 'Innovative Vaccines and Viral Pathogenesis: Insights from Recent Monkeypox Research' is now open.
See webinar detailsWe noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Cancer and Oncology
-
3. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
-
4. Mode of action of T cells engineered with CAR or TCR for cancer treatment
- Prof. Sebastian Kobold
-
5. Immunotherapy: insights from advanced disease
- Dr. Sara M. Tolaney
-
6. Recent advances in the field of non-coding RNAs in cancer
- Prof. George Calin
- Dr. Maitri Shah
-
7. How tumor-microenvironment interactions drive or inhibit metastasis
- Prof. Isaac P. Witz
-
8. A novel cancer therapy to stimulate oncogenic ERK signalling
- Prof. Reiko Sugiura
-
9. MRD-driven multiple myeloma treatment: next step forward
- Prof. Ola Landgren
-
11. Germinal centre lymphomas: advances in diagnostic and therapeutic intervention
- Dr. Koorosh Korfi
- Prof. Jude Fitzgibbon
-
12. Immunotherapy in lung cancer
- Dr. Mark M. Awad
-
13. Preservation of fertility in cancer patients: the impact of chemotherapy
- Prof. Kutluk H. Oktay
-
15. Solution proposed to a 2000 year old problem in oncology
- Dr. Michael Retsky
- Clinical Practice
-
16. Stillbirth: diagnosis, investigation and aftercare
- Prof. Alexander E. P. Heazell
-
17. Analyzing the medical relevance of skin care trends
- Prof. Zoe Draelos
-
18. Genetic counseling: preconception, prenatal, perinatal
- Prof. Aubrey Milunsky
-
19. The past, present & future of ANA testing: history and challenges of ANA
- Prof. Marvin J. Fritzler
-
20. The past, present & future of ANA testing: changing bandwidth and future of ANA
- Prof. Marvin J. Fritzler
-
22. Mitochondrial diseases: an update
- Dr. Ayesha Saleem
-
23. Hemophilia A
- Dr. Snejana Krassova
-
26. Recent advances in diagnosis and interventions in ophthalmology
- Dr. Rebecca Kaye
- Prof. Andrew Lotery
- Gastroenterology
-
27. Building implantable human liver tissue from pluripotent stem cells
- Prof. David C. Hay
-
28. Microbiome therapies to treat gastrointestinal diseases
- Dr. Patricia Bloom
-
29. Drug-induced liver injury: importance, epidemiology, and mechanisms of DILI
- Prof. James H. Lewis
-
30. Drug-induced liver injury: risk factors and drug development in DILI
- Prof. James H. Lewis
-
31. Drug-induced liver injury: HDS, diagnosing, treating and preventing DILI
- Prof. James H. Lewis
-
32. An update on the multiple faces of celiac disease
- Prof. Aaron Lerner
- Immunology
-
33. Drug allergy: new knowledge
- Prof. Mariana C. Castells
-
34. Biologics as a treatment strategy in food allergy
- Prof. Sayantani B. Sindher
-
35. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
36. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
-
37. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
-
38. Therapeutic antibody development
- Prof. Dr. Katja Hanack
-
39. Understanding treatment coverage in mass drug administrations
- Dr. Margaret Baker
-
40. The thymus and T cell development: a primer
- Prof. Georg Holländer
- Infectious Diseases
-
42. The Global Virus Network: collaboration to address pandemic and regional threats
- Prof. Sten H. Vermund
-
43. New concepts in the management of CAP: a focus on severe illness - treatment and therapies
- Prof. Michael S. Niederman
-
44. New concepts in the management of CAP: a focus on severe illness - MRSA and MDR pathogens
- Prof. Michael S. Niederman
-
45. CRISPR-based suppression drives for vector control
- Prof. Andrea Crisanti
-
46. HIV cure: harnessing innate and adaptive strategies
- Prof. Luis Montaner
- Cardiovascular, Metabolism & Nutrition
-
47. Cow’s milk allergy: the future
- Dr. Carina Venter
-
48. Cow's milk allergy: management
- Dr. Carina Venter
-
49. Moving from GWAS hits to functional variants
- Prof. Steve Humphries
-
50. X-linked hypophosphataemia: genetics, diagnosis and management
- Prof. Thomas O. Carpenter
-
51. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
52. Current concepts for the management of patients with osteoporosis
- Dr. Michael Lewiecki
-
53. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
54. Peptide YY (PYY) in obesity and diabetes
- Dr. Nigel Irwin
- Microbiology
-
55. Vaccines and the fight against antimicrobial resistance 1
- Dr. Annaliesa S. Anderson
-
56. Vaccines and the fight against antimicrobial resistance 2
- Dr. Annaliesa S. Anderson
-
57. Vaccines as a weapon against antibiotic resistance
- Dr. Pumtiwitt McCarthy
-
58. PathoLive: pathogen detection while sequencing
- Dr. Simon Tausch
-
60. Successes and failures with vaccines
- Prof. Stanley Plotkin
-
61. Immunology, the microbiome and future perspectives
- Prof. Sheena Cruickshank
-
62. Impact of the HPV vaccine programme – a changing landscape
- Dr. Kevin Pollock
- Neurology and Neuroscience
-
63. Advances in the diagnosis and treatment of tardive dyskinesia
- Prof. Emeritus Stanley N. Caroff
-
64. Cellular therapies for neurological Injuries: bioreactors, potency, and coagulation
- Prof. Charles S. Cox, Jr.
-
65. Cardiovascular involvement in Parkinson’s disease
- Dr. David S. Goldstein
-
66. Molecular brain imaging (PET) in diseases with dementia
- Prof. Karl Herholz
-
67. Current thinking in pain medicine and some thoughts on back pain
- Dr. Nick Hacking
-
68. Bioelectronic medicine: immunomodulation by vagus nerve stimulation
- Prof. Paul Peter Tak
-
69. Developments & future directions in the management of chronic pain
- Prof. Simon Haroutounian
-
70. Deep Brain Stimulation (DBS) neuromodulation for Schizophrenia
- Prof. Judith Gault
-
71. Parkinson’s at 200 years: an update on Parkinson’s research in 2017
- Prof. Patrick A. Lewis
-
72. Alzheimer's disease: where are we up to?
- Prof. John Hardy
- Pharmaceutical Sciences
-
73. Pharmacokinetics, -dynamics and dosing considerations in children
- Prof. Dr. Karel Allegaert
-
74. Why in vitro permeation test – and not in vivo?
- Prof. Howard Maibach
-
75. The future of plasma-derived medicinal products (PDMP)
- Dr. Daniele Focosi
-
76. RNA therapeutics: clinical applications and methods of delivery
- Prof. John P. Cooke
-
77. Recent advances in the development of gene delivery technologies
- Dr. Takis Athanasopoulos
-
78. Preclinical translation of mesenchymal stem cell therapies
- Dr. Peter Childs
-
79. Modulating gene expression to treat diseases
- Dr. Navneet Matharu
-
80. Accelerating drug discovery with machine learning and AI
- Dr. Olexandr Isayev
-
81. AI and big data in drug discovery
- Mr. Ed Addison
-
82. Emerging big data in medicinal chemistry: promiscuity analysis as an example
- Prof. Dr. Jürgen Bajorath
- Dr. Ye Hu
-
83. Binding kinetics in drug discovery
- Dr. Rumin Zhang
-
84. Modeling of antibody-drug conjugate pharmacokinetics
- Dr. Dhaval K. Shah
-
85. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
86. Current challenges in the design of antibody-drug conjugates
- Prof. L. Nathan Tumey
-
87. Inorganic nanostructured interfaces for therapeutic delivery
- Prof. Tejal Desai
-
88. Latest development in therapy-related autophagy research
- Dr. Vignir Helgason
- Respiratory Diseases
-
89. Respiratory syncytial virus vaccination
- Prof. Peter Openshaw
-
90. Advances in gene therapy for respiratory diseases 1
- Prof. John F. Engelhardt
-
91. Advances in gene therapy for respiratory diseases 2
- Prof. John F. Engelhardt
-
92. Asthma
- Prof. William Busse
- Dr. Amanda McIntyre
-
93. New drugs for asthma
- Prof. Peter Barnes
-
94. CompEx asthma: a novel composite exacerbation endpoint
- Dr. Carla A. Da Silva
-
95. Updates in chronic obstructive pulmonary disease (COPD)
- Dr. Omar S. Usmani
Printable Handouts
Navigable Slide Index
- Introduction
- T cells and oncology
- Therapeutic use T cells
- Therapeutic use of gene engeneered T cells (1)
- Chimeric Antigen Receptors (CAR)
- Anti-CD19 CAR T cells: clinical responses (1)
- Anti-CD19 CAR T cells: clinical responses (2)
- Anti-CD19 CAR T cells: clinical responses in diffuse large B cell lymphoma
- Successful treatment with CAR T cells
- F.D.A. approved treatment
- Toxicities associated with CAR T cell therapy: Cytokine Release Syndrom (CRS)
- Therapeutic use of gene engeneered T cells (2)
- Therapeutic use of T cells: TCR vs. CAR (1)
- Therapeutic use of T cells: TCR vs. CAR (2)
- TCR vs. CAR: advantages and disadvantages
- TCR vs. CAR: mode of action
- Common effector molecules for CAR and TCR T cells
- Issues associated with anti-CD19-CAR T cell therapies
- Limited applicability of CAR T cells outside of hematological malignancies so far
- The bottlenecks to CAR T cell therapy efficacy in solid tumors
- Potential solutions - by means of engineering
- Acknowledgements
- Disclosures
Topics Covered
- Introduction to therapeutic use T cells
- Clinical use of CAR T cell therapy
- The mode of action of CAR T cell therapy
- Differences to TCR T cell therapy
- Resistance mechanisms to CAR T cell therapy
Links
Series:
Categories:
Therapeutic Areas:
External Links
Talk Citation
Kobold, S. (2020, November 30). Mode of action of T cells engineered with CAR or TCR for cancer treatment [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved November 1, 2024, from https://doi.org/10.69645/XFDK9879.Export Citation (RIS)
Publication History
Financial Disclosures
- Sebastian Kobold (S.K.) has licensed IP to TCR2 Inc, Boston. S.K. has received research support from TCR2 Inc and Arcus Biosciences. S.K. serves on the scientific advisory board of TCR2 Inc and on various scientific advisory boards of Novartis.
Mode of action of T cells engineered with CAR or TCR for cancer treatment
Published on November 30, 2020
36 min
A selection of talks on Pharmaceutical Sciences
Transcript
Please wait while the transcript is being prepared...
0:00
Hi. My name is Sebastian Kobold,
I'm a Professor of Medicine and Experimental Immuno-oncology and
Vice-Chair of Clinical Pharmacology here at
the University Hospitals of Ludwig Maximilians University in Munich.
Today, I want to tell you more about how T cells that have been engineered,
either with a chimeric antigen receptor or with
a T cell receptor work for cancer treatment.
I would just go straight ahead with saying that most of the talk will be
about chimeric antigen receptors CAR because they're
the so far only approved treatment or cellular treatment for cancer that we have and
that's why I think it's much more important to focus on those
than on the TCRs which are currently more experimental.
0:46
T cells are really at the core of therapeutic developments in oncology and the reason for
that is really being because it has been recognized that T cells are being hampered,
are being suppressed by cancer cells in
order to give the cancer cells the opportunity to grow and to progress.
Meaning that in a sense,
T cells have the natural ability to become
specific against specific or cancer associated antigens.
But the issue is that T cells are being suppressed by
the tumor cell to allow the tumor cell freedom to grow and to metastasize.
But it has been recognized that in this sense,
two molecules seem to be very important to suppress T cell activity and cancer,
which is the programmed death receptor1 and a cytotoxic T lymphocyte antigen-4, CTLA-4.
One of the big part of the advances in oncology in recent years has been
that if you block either of those pathways by, let's say,
monoclonal antibodies as depicted on the slide,
you can actually reinvigorate T cell responses and
enable them to recognize cancer cells again.
This has been really a paradigm shift in oncology because now for the first time,
we really had a drug or a modality that's not targeting the cancer cell at all,
but really targeting only immune cells or T cells in this case.
By doing so, they re-enable the immune system to
recognize cancer cells and to be therapeutic.
In a sense, T cells have become really premium or prime anti-cancer weapons.
At the core of this recognition stems the following idea,
Hide