Registration for a live webinar on 'Innovative Vaccines and Viral Pathogenesis: Insights from Recent Monkeypox Research' is now open.
See webinar detailsWe noted you are experiencing viewing problems
-
Check with your IT department that JWPlatform, JWPlayer and Amazon AWS & CloudFront are not being blocked by your network. The relevant domains are *.jwplatform.com, *.jwpsrv.com, *.jwpcdn.com, jwpltx.com, jwpsrv.a.ssl.fastly.net, *.amazonaws.com and *.cloudfront.net. The relevant ports are 80 and 443.
-
Check the following talk links to see which ones work correctly:
Auto Mode
HTTP Progressive Download Send us your results from the above test links at access@hstalks.com and we will contact you with further advice on troubleshooting your viewing problems. -
No luck yet? More tips for troubleshooting viewing issues
-
Contact HST Support access@hstalks.com
-
Please review our troubleshooting guide for tips and advice on resolving your viewing problems.
-
For additional help, please don't hesitate to contact HST support access@hstalks.com
We hope you have enjoyed this limited-length demo
This is a limited length demo talk; you may
login or
review methods of
obtaining more access.
- Cancer and Oncology
-
3. Latest advances in the development of CAR & TCR T-cell treatments for solid tumours
- Dr. Else Marit Inderberg
-
4. Mode of action of T cells engineered with CAR or TCR for cancer treatment
- Prof. Sebastian Kobold
-
5. Immunotherapy: insights from advanced disease
- Dr. Sara M. Tolaney
-
6. Recent advances in the field of non-coding RNAs in cancer
- Prof. George Calin
- Dr. Maitri Shah
-
7. How tumor-microenvironment interactions drive or inhibit metastasis
- Prof. Isaac P. Witz
-
8. A novel cancer therapy to stimulate oncogenic ERK signalling
- Prof. Reiko Sugiura
-
9. MRD-driven multiple myeloma treatment: next step forward
- Prof. Ola Landgren
-
11. Germinal centre lymphomas: advances in diagnostic and therapeutic intervention
- Dr. Koorosh Korfi
- Prof. Jude Fitzgibbon
-
12. Immunotherapy in lung cancer
- Dr. Mark M. Awad
-
13. Preservation of fertility in cancer patients: the impact of chemotherapy
- Prof. Kutluk H. Oktay
-
15. Solution proposed to a 2000 year old problem in oncology
- Dr. Michael Retsky
- Clinical Practice
-
16. Stillbirth: diagnosis, investigation and aftercare
- Prof. Alexander E. P. Heazell
-
17. Analyzing the medical relevance of skin care trends
- Prof. Zoe Draelos
-
18. Genetic counseling: preconception, prenatal, perinatal
- Prof. Aubrey Milunsky
-
19. The past, present & future of ANA testing: history and challenges of ANA
- Prof. Marvin J. Fritzler
-
20. The past, present & future of ANA testing: changing bandwidth and future of ANA
- Prof. Marvin J. Fritzler
-
22. Mitochondrial diseases: an update
- Dr. Ayesha Saleem
-
23. Hemophilia A
- Dr. Snejana Krassova
-
26. Recent advances in diagnosis and interventions in ophthalmology
- Dr. Rebecca Kaye
- Prof. Andrew Lotery
- Gastroenterology
-
27. Building implantable human liver tissue from pluripotent stem cells
- Prof. David C. Hay
-
28. Microbiome therapies to treat gastrointestinal diseases
- Dr. Patricia Bloom
-
29. Drug-induced liver injury: importance, epidemiology, and mechanisms of DILI
- Prof. James H. Lewis
-
30. Drug-induced liver injury: risk factors and drug development in DILI
- Prof. James H. Lewis
-
31. Drug-induced liver injury: HDS, diagnosing, treating and preventing DILI
- Prof. James H. Lewis
-
32. An update on the multiple faces of celiac disease
- Prof. Aaron Lerner
- Immunology
-
33. Drug allergy: new knowledge
- Prof. Mariana C. Castells
-
34. Biologics as a treatment strategy in food allergy
- Prof. Sayantani B. Sindher
-
35. B cells at the crossroads of autoimmune diseases
- Dr. Xiang Lin
-
36. Studying immune responses “one cell at a time”
- Dr. Mir-Farzin Mashreghi
-
37. Mathematical modeling in immunology
- Prof. Ruy M. Ribeiro
-
38. Therapeutic antibody development
- Prof. Dr. Katja Hanack
-
39. Understanding treatment coverage in mass drug administrations
- Dr. Margaret Baker
-
40. The thymus and T cell development: a primer
- Prof. Georg Holländer
- Infectious Diseases
-
42. The Global Virus Network: collaboration to address pandemic and regional threats
- Prof. Sten H. Vermund
-
43. New concepts in the management of CAP: a focus on severe illness - treatment and therapies
- Prof. Michael S. Niederman
-
44. New concepts in the management of CAP: a focus on severe illness - MRSA and MDR pathogens
- Prof. Michael S. Niederman
-
45. CRISPR-based suppression drives for vector control
- Prof. Andrea Crisanti
-
46. HIV cure: harnessing innate and adaptive strategies
- Prof. Luis Montaner
- Cardiovascular, Metabolism & Nutrition
-
47. Cow’s milk allergy: the future
- Dr. Carina Venter
-
48. Cow's milk allergy: management
- Dr. Carina Venter
-
49. Moving from GWAS hits to functional variants
- Prof. Steve Humphries
-
50. X-linked hypophosphataemia: genetics, diagnosis and management
- Prof. Thomas O. Carpenter
-
51. What is new in type 1 diabetes?
- Prof. Åke Lernmark
-
52. Current concepts for the management of patients with osteoporosis
- Dr. Michael Lewiecki
-
53. Antibodies to control or prevent type 1 diabetes
- Dr. Robert Hilbrands
-
54. Peptide YY (PYY) in obesity and diabetes
- Dr. Nigel Irwin
- Microbiology
-
55. Vaccines and the fight against antimicrobial resistance 1
- Dr. Annaliesa S. Anderson
-
56. Vaccines and the fight against antimicrobial resistance 2
- Dr. Annaliesa S. Anderson
-
57. Vaccines as a weapon against antibiotic resistance
- Dr. Pumtiwitt McCarthy
-
58. PathoLive: pathogen detection while sequencing
- Dr. Simon Tausch
-
60. Successes and failures with vaccines
- Prof. Stanley Plotkin
-
61. Immunology, the microbiome and future perspectives
- Prof. Sheena Cruickshank
-
62. Impact of the HPV vaccine programme – a changing landscape
- Dr. Kevin Pollock
- Neurology and Neuroscience
-
63. Advances in the diagnosis and treatment of tardive dyskinesia
- Prof. Emeritus Stanley N. Caroff
-
64. Cellular therapies for neurological Injuries: bioreactors, potency, and coagulation
- Prof. Charles S. Cox, Jr.
-
65. Cardiovascular involvement in Parkinson’s disease
- Dr. David S. Goldstein
-
66. Molecular brain imaging (PET) in diseases with dementia
- Prof. Karl Herholz
-
67. Current thinking in pain medicine and some thoughts on back pain
- Dr. Nick Hacking
-
68. Bioelectronic medicine: immunomodulation by vagus nerve stimulation
- Prof. Paul Peter Tak
-
69. Developments & future directions in the management of chronic pain
- Prof. Simon Haroutounian
-
70. Deep Brain Stimulation (DBS) neuromodulation for Schizophrenia
- Prof. Judith Gault
-
71. Parkinson’s at 200 years: an update on Parkinson’s research in 2017
- Prof. Patrick A. Lewis
-
72. Alzheimer's disease: where are we up to?
- Prof. John Hardy
- Pharmaceutical Sciences
-
73. Pharmacokinetics, -dynamics and dosing considerations in children
- Prof. Dr. Karel Allegaert
-
74. Why in vitro permeation test – and not in vivo?
- Prof. Howard Maibach
-
75. The future of plasma-derived medicinal products (PDMP)
- Dr. Daniele Focosi
-
76. RNA therapeutics: clinical applications and methods of delivery
- Prof. John P. Cooke
-
77. Recent advances in the development of gene delivery technologies
- Dr. Takis Athanasopoulos
-
78. Preclinical translation of mesenchymal stem cell therapies
- Dr. Peter Childs
-
79. Modulating gene expression to treat diseases
- Dr. Navneet Matharu
-
80. Accelerating drug discovery with machine learning and AI
- Dr. Olexandr Isayev
-
81. AI and big data in drug discovery
- Mr. Ed Addison
-
82. Emerging big data in medicinal chemistry: promiscuity analysis as an example
- Prof. Dr. Jürgen Bajorath
- Dr. Ye Hu
-
83. Binding kinetics in drug discovery
- Dr. Rumin Zhang
-
84. Modeling of antibody-drug conjugate pharmacokinetics
- Dr. Dhaval K. Shah
-
85. Antibody engineering: beginnings to bispecifics and beyond
- Dr. Ian Wilkinson
-
86. Current challenges in the design of antibody-drug conjugates
- Prof. L. Nathan Tumey
-
87. Inorganic nanostructured interfaces for therapeutic delivery
- Prof. Tejal Desai
-
88. Latest development in therapy-related autophagy research
- Dr. Vignir Helgason
- Respiratory Diseases
-
89. Respiratory syncytial virus vaccination
- Prof. Peter Openshaw
-
90. Advances in gene therapy for respiratory diseases 1
- Prof. John F. Engelhardt
-
91. Advances in gene therapy for respiratory diseases 2
- Prof. John F. Engelhardt
-
92. Asthma
- Prof. William Busse
- Dr. Amanda McIntyre
-
93. New drugs for asthma
- Prof. Peter Barnes
-
94. CompEx asthma: a novel composite exacerbation endpoint
- Dr. Carla A. Da Silva
-
95. Updates in chronic obstructive pulmonary disease (COPD)
- Dr. Omar S. Usmani
Printable Handouts
Navigable Slide Index
- Introduction
- Educational objectives
- The scale of things – nanometers and more
- Nanomaterials in biological context
- Nanotechnology includes nanomaterials
- Examples of inorganic nanostructured materials
- Implantable drug delivery systems
- How are drugs currently delivered?
- Overcoming injections' poor pharmacokinetics?
- Concept - zero order release
- Tuning pore size to produce linear diffusion
- Nanoscale pores alter drug diffusion curves
- Example: Titania nanochannels
- Example: nanochannels in silicon
- Nanoporous membrane for drug delivery
- Antibody elution
- Sustained release kinetics in vivo
- Drug delivery from nanostructured implants
- Oral interfaces
- Why oral delivery?
- Challenges in oral delivery
- The concept
- Devices can be fabricated
- How to enhance particle binding to epithelium?
- Topography of thin film microdevices
- Nanowire interfaces
- Stability under flow conditions?
- Cell-nanowire interface
- Static adhesion in physiological conditions
- Adhesion in mucin flow
- Adhesive forces
- Improved targeting and retention in vivo
- Nanostructured materials: key benefits
Topics Covered
- Nanomaterials in biological context
- Nanotechnology includes nanomaterials
- Implantable drug delivery systems
- Problem: overcoming injections’ poor pharmacokinetics
- Tuning pore size to produce linear diffusion
- Nanoscale pores alter drug diffusion curves (more dose control)
- Nanoporous membrane for improved implantable drug delivery
- Controlled delivery from nanostructured implants
- Challenges in oral delivery
- Devices can be fabricated
- Nanowire interfaces & Cell-nanowire interface
- Adhesive forces
- Improved targeting and retention of microdevices in vivo
- Nanostructured materials: key benefits
Links
Series:
Categories:
Talk Citation
Desai, T. (2018, July 31). Inorganic nanostructured interfaces for therapeutic delivery [Video file]. In The Biomedical & Life Sciences Collection, Henry Stewart Talks. Retrieved November 1, 2024, from https://doi.org/10.69645/AUHP4176.Export Citation (RIS)
Publication History
Financial Disclosures
- Prof. Tejal Desai has not informed HSTalks of any commercial/financial relationship that it is appropriate to disclose.
A selection of talks on Pharmaceutical Sciences
Transcript
Please wait while the transcript is being prepared...
0:00
Hello, my name is Tejal Desai,
and I'm a professor and chair of
the Department of Bioengineering and Therapeutic Sciences at UCSF.
Today, I am talking about "Inorganic Nanostructured Interfaces for Therapeutic Delivery".
An area that we've worked in for many years,
related to how we can create
nanostructured materials to influence how we deliver drugs to the body.
0:23
For our educational objectives today,
I hope we can gain a basic understanding of nanotechnology and
its implications for biology and particular therapeutic delivery,
and to gain exposure of some of the current challenges facing drug delivery.
Finally, I hope that you will understand ways in which
inorganic nanostructured materials can be used to enhance therapeutic delivery.
0:46
To get started, I just want to introduce everyone to the scale of materials,
and how we think about nanostructures versus micro and macro structures.
The nanotechnology world really lives in a very small domain.
Things that are less than 100 nanometers or so.
So smaller than red blood cells,
smaller than a human hair,
and really on the scale of proteins and biologic molecules.
This is where we're interested in really creating
materials that can interface with the body.
1:18
And while there are many many nanomaterials that had been developed,
in particular what I'll talk to you today about,
are materials in which we take existing micro or macro materials,
and actually nanostructure the interface.
So, this image that is on your right,
which shows a nanotextured or nanoporous implant,
that can be used in many different ways.
Why are we interested in this?